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Model for spatial microtubule oscillations
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Under particularin vitro conditions, oscillating spatial and temporal waves of assembled microtubules can
be observed. A reaction-diffusion model is presented to reproduce these results. This model is based on a set
of chemical reaction equations and extended to include spatial dependence and diffusion. The basic properties
of the model are presented and the results are demonstrated to connect the observable waves with turbidimetric
measurements. The results of the model are consistent with experimental findings.@S1063-651X~99!05307-6#

PACS number~s!: 87.10.1e, 82.20.Wt, 82.40.Bj
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I. INTRODUCTION

Microtubules are tubular polymers formed from the pr
tein tubulin. They are one of the three filament types t
constitute the eukaryotic cytoskeleton and are intrinsic
many cell functions. As additional research is performed
these structures, more and more fascinating features ar
vealed. One of the most intriguing properties pertains to
growth characteristics of microtubules. For many years,
dynamic instability of individual microtubules has bee
known and studied, but another behavior is also obser
When an ensemble of microtubules has the correct bu
conditions, the total amount of assembled tubulin underg
damped oscillations@1–4#. These oscillations are typicall
observed turbidimetrically. This method measures
amount of light scattering from the sample which is prop
tional to the amount of assembled tubulin. Since this i
bulk measurement, all of the spatial information about wh
assembly is taking place is eliminated, thus leaving the
pression that these are simply oscillations in time, homo
neous throughout the sample. This may be the case in s
situations, but other possibilities exist. Mandelkowet al. @5#
performed an experiment where they actually viewed mic
tubule oscillations by eye and they observed waves in
sample. These waves of assembly were nucleated at
boundary of the vessel containing the sample and propag
inwards through the buffer.

There have been many different oscillation models dev
oped in previous years@3,6–9#. These models varied in bot
their approaches and their success. Another model involv
chemical kinetics@10# was shown to reproduce many of th
observed microtubule oscillation phenomena. The variab
in this model had no spatial dependence and the oscillat
produced were purely temporal, in accordance with most
perimental results. We will use this model as a starting po
and make the necessary additions to include spatial de
dence. The results of this model will be discussed and c
pared with those from experiment.

II. ADDING SPATIAL DEPENDENCE

The chemical kinetics model presented earlier@10# was
based on five basic reactions involving microtubule and
bulin dimers bound with either guanosine triphosph
~GTP! or guanosine diphosphate~GDP!. The set of reactions
was
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MTn1Tu-GTP→
k1

MTn11 , ~1!

MTn→
kc

nTu-GDP, ~2!

ncTu-GTP→
kn

MT, ~3!

Tu-GDP→
kr

Tu-GTP, ~4!

MTn1Tu-GDP→
ki

~n11!Tu-GDP, ~5!

where MTi is a microtubule containingi dimers, and
Tu-GTP/Tu-GDP is an unassembled tubulin dimer w
GTP/GDP bound at the exchangeable site (E site! in the b
monomer~see@10# for more details!. It was assumed that al
the variables depended only on time, but we will now a
sume space dependence as well. We also want to extend
model to include diffusion, however, not all quantities w
diffuse to the same extent. Assembled microtubules
much larger than their constituent dimers and would th
diffuse much more slowly. For this reason, we will on
consider the diffusion of free tubulin dimers. With the
added terms, we can derive the set of reaction-diffus
equations for the above processes:

Ṅ52kcN1knTt2kiNTd , ~6!

Ṫa5k1NTt2kcTa1knTt
nc2kiTaTd , ~7!

Ṫd5kcTa2krTd1kiTaTd1D¹2Td , ~8!

Ṫt52k1NTt2ncknTt
nc1krTd1D¹2Tt , ~9!

where the diffusion constantD is the same for all free
dimers, independent of their bound nucleotide. The four
rameters areN, the microtubule number density,Ta , the den-
sity of assembled tubulin, andTt (Td), free tubulin dimers
with GTP ~GDP! bound at theE site. The rate constants fo
our reactions were largely determined from experimen
data@10#, likewise the diffusion of tubulin within the cyto-
plasm has been measured. Salmonet al. @11# found an in
vivo value ofD55.931028 cm2/s. From this they also es
838 ©1999 The American Physical Society
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timated a value ofD55631028 cm2/s for tubulin in anin
vitro buffer. Since we are modelingin vitro assembly, we
will adopt the second value for our choice ofD. All of the
constants in this model are summarized in Table I.

There has been much debate surrounding the topic of
crotubule nucleation and the order of the nucleation react
We will select a value ofnc53 in solving the above equa
tions. Flyvbjerget al. @12# used a higher order process for th
initial nucleation (nc56) followed by several reactions tha
were third order in the monomer concentration (nc53). Al-
though we assume complete collapse of the microtubul
reactions~2! and ~5!, it is more likely that some oligomer
remain after collapse@13,14#. If these oligomers serve a
nuclei for growth, the ensuing reactions would be third ord
in the dimer concentration. Although greatly simplified fro
the real situation, our model captures the essence of the p
lem and should have roughly the correct dependence on
tubulin concentration.

With all of the constants determined, we can solve
system of equations. For simplicity we will look for a solu
tion in one spatial dimension, thus we discretize each qu
tity (Ta , Td , Tt , and N) on a (x,t) grid. Because of the
nonlinear terms in our equations, we selected a semi-imp
method developed by Bader and Deufhard@15#. The Laplac-
ian was calculated using a five-point central difference f
mula

]2Ti
n

]x2
.

1

3 F4~Ti 11
n 22Ti

n1Ti 21
n !

Dx2
2

Ti 12
n 22Ti

n1Ti 22
n

~2Dx!2 G
1O~Dx4!. ~10!

In this formula, the subscripti and superscriptn denote the
grid point (xi ,tn) andT represents one of the reactant co
centrations. We want to solve this system subject to part
lar boundary conditions. Since we have a closed vessel
choose no-flux boundary conditions

]Ti
n

]x
50 for i 51,N. ~11!

This can easily be incorporated into our central differen
formula by artificially making each concentration profi
symmetric around each boundary. Solutions to this se
reaction-diffusion equations will now be shown under a v
riety of conditions.

III. RESULTS OF THE MODEL

The free parameters we now have to work with are
temperature and tubulin concentration. We also have one

TABLE I. The constants used in the simulations~see Ref.@5#
for more details!.

k1 9 mM21 s21

kc 0.002 s21

kn 2.6310210 mM22 s21

ki 0.01mM21 s21

kr 0.0520.2 s21

D 631027 cm2/s
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ditional freedom in that we may choose the initial conditio
for the concentrationsN, Ta , Tt , and Td . If we would
choose constant profiles forTd and Tt , the diffusion terms
would contribute nothing since the Laplacian would be ze
and all resulting oscillations would be homogeneous
space. For nonconstant profiles, however, each part of
system will evolve based on local concentrations but wo
be coupled to the rest of the cell by the diffusion of the fr
tubulin. Systems such as this have long been known to
important in pattern formation phenomena. Turing@16# pro-
posed reaction-diffusion models as the basis for pattern
mation in chemical systems. Later models involved gradie
of the concentrations to produce patterns in biological s
tems @17#. In any case, the basis of all pattern formati
either in chemical or biological systems is the inhomogene
of some parameter such as initial conditions, diffusion co
ficients, or the rate constants. For steady-state pattern
emerge in systems with diffusion, patterns must be due
spatially inhomogeneous rate or diffusion constants si
diffusion will eventually remove patterns simply due to in
tial conditions.

In our system, the diffusion constant is very small on t
scale of the other variables. Because of this, instabilities a
ing from diffusion are unlikely for the concentrations wit
which we are concerned. We know that increasing the c
centration of GTP-rich tubulin increases the size of the
cillations. If we introduce an initial gradient ofTt across the
cell, we would expect interesting dynamics. Figure 1 sho
the results for a linear gradient ofTt from 50 mM on one
edge to 100mM on the other. Although these plots only ru
for a short time, it can easily be seen how initial conditio
cannot produce stable patterns. At the last time step, the
lution is very nearly flat. To change this result, we mu
assume some constant~s! to be spatially inhomogeneous.

Recall the findings of the Mandelkow group mention
earlier. In systems where they observed waves crossing
vessel, they concluded that the barrier for nucleation w
somehow lower at the boundaries. In their experiments,
buffer containing the tubulin was well mixed before the te
perature jump, so we can assume homogeneous initial
ditions for all variables. To try and produce such waves
our system, we adopt a nucleation rate which is highest at
edge of the cell and decays exponentially to the interior
the cell. ~For simplicity, we will only raise the nucleation

FIG. 1. Simulation for an initial gradient of Tu-GTP across t
sample. The initial Tu-GTP concentration varies linearly fro
50mM at 0 cm to 100mM at 1 cm. All other variables are initially
set to zero.
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840 PRE 60D. SEPT
constant on one side of the cell.! The simulation was per
formed for a tubulin concentration of 100mM where initially
all of the tubulin was unassembled and GTP-rich. Af
nucleation at the boundary, a wave of assembled tub
propagates into the cell center~see Fig. 2!. This is in fact not
a single wave, but a series of waves. As was observed
Mandelkowet al. @5#, the waves move in from the bounda
and slow as they move towards the interior of the ves
Thus the number of visible wave crests increases with ti
Figure 2 shows results for two different values ofkr . A
higher value ofkr should correspond to a higher GTP co
centration since it increases the rate of nucleotide excha
In our simulations, this has the effect of increasing the s
and frequency of the waves.

We can more accurately quantify the effects of the tubu
concentration and the rate of nucleotide exchange on
shape and behavior of the waves. Figure 3 shows how e
of these parameters affects the average speed of the w
the maximum wave height, and the initial separation betw
the first two waves. The values that we find in our model
consistent with the numbers found by Mandelkowet al. @5#.
They reported speeds around 0.015 mm/s and wavelen
on the order of 5 mm. They also reported initial nucleati

FIG. 2. Simulation for an inhomogeneous nucleation rate wh
kn is highest atx50 cm and falls off ase2x/1 cm. Waves of as-
sembled tubulin are nucleated at the boundary and propagat
wards the middle of the cell. The tubulin concentration is 100mM
andkr is equal to 0.05 s21 ~top! and 0.2 s21 ~bottom!.
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after about 30 s and periods of oscillations around 200
Again, our simulations produce values of the same orde
magnitude.

As mentioned earlier, turbidimetric measurements ha
the effect of removing all spatial information. If we perform
an average over space at each time step of our simulation
average should correspond to the overall turbidity of
sample. Figure 4 shows three plots for different tubulin co
centrations. At each concentration, there was wave forma
at the boundary as depicted in the previous simulations,
at the lower concentrations, the average amount of assem
simply grew monotonically. As the tubulin concentratio
was increased, the plot of the average assembly develope
overshoot and eventually, with increasing concentration,
cillations.

IV. DISCUSSION

Microtubule oscillations can be produced in both time a
space under the correct experimental conditions. T
reaction-diffusion model presented in this paper produ
qualitatively similar results. An additional feature of th
model is that it draws a connection between the spa

e

to-

FIG. 3. The dependence of the average wave speed, the m
mum peak divided by initial tubulin concentration, and the init
separation between the first and second waves as functions of i
tubulin concentration and the nucleotide exchange ratekr . For the
left plot kr50.2 s21, for the right plot the initial tubulin concen-
tration was 100mM.

FIG. 4. The average assembled tubulin density across
sample as a function of time. The four plots are for tubulin conc
trations of 50mM ~bottom!, 90mM, and 150mM ~top!.
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waves and turbidimetric measurements. From these resu
seems possible that waves of assembled tubulin may exi
systems where the overall turbidity of the sample does
undergo oscillations. In fact, since inhomogeneity plays s
a large role in pattern formation, it would seem to be ve
difficult to design an experiment where homogeneous mic
tubule oscillations could be produced. It must be stres
that, within this model, the waves that are seen do not r
resent the movement of microtubules since assembled p
mers are not allowed to diffuse. Instead, these waves
variations in the local stability of the growing microtubule
This is very likely the experimental situation in that the
waves represent oscillations in the stability of the assemb
and unassembled phases of tubulin.

The basis of this oscillation model is five simple chemic
reactions along with diffusion of free tubulin dimers. The
are many possibilities for extending this model to inclu
additional effects and to make it more realistic, but we
ready have many degrees of freedom in the present mo
The spatial dependence of the rate constants for our reac
can have a large effect. One possibility would be to choos
nucleation rate that was higher in the region of a microtub
,

n-

S

, it
in

ot
h

y
-
d

p-
ly-
re

d

l

-
el.
ns
a
e

organizing center~MTOC! and lower elsewhere. Such
choice would lead to longer microtubules in the vicinity
the MTOC and shorter ones further away. Choosing ot
rate constants with a spatial dependence or an inhom
neous temperature distribution could produce many other
fects.

As suggested from experimental evidence, we assum
that the nucleation rate was higher near the boundary of
vessel. The source of this increased rate is not known
may be attributed to temperature orpH gradients, or even
dissolved gas bubbles on the sides of the vessel. For w
ever reason, it is clear that the system is not comple
homogeneous, and this inhomogeneity is the basis for os
lations and wave formation.
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